Types of Distributed Systems

Types of Distributed Systems #

Distributed systems can be categorized based on their architecture, purpose, and how components interact. Each type has distinct characteristics that make it suitable for specific use cases.

1. Client-Server Systems #

Architecture #

┌─────────┐     ┌─────────┐     ┌─────────┐
│         │     │         │     │         │
│ CLIENT  │────►│ SERVER  │◄────│ CLIENT  │
│    A    │     │         │     │    B    │
└─────────┘     └─────────┘     └─────────┘
                     ▲
                     │
                     ▼
                ┌─────────┐
                │         │
                │ CLIENT  │
                │    C    │
                └─────────┘

Key Characteristics #

  • Role Separation: Clear division between service providers (servers) and consumers (clients)
  • Centralized Control: Servers manage resources and enforce access policies
  • Request-Response Pattern: Communication follows a request-response cycle
  • Scalability Challenge: Servers can become bottlenecks under high load

Technical Implementation #

  • Communication Protocols: HTTP/HTTPS, WebSockets, gRPC
  • Load Distribution: Often uses load balancers to distribute client requests
  • State Management: Servers typically maintain session state

Real-World Examples #

  • Web Applications: Gmail, online banking portals
  • API Services: Twitter API, payment gateways
  • Database Clients: SQL clients connecting to database servers
  • Enterprise Applications: SAP, Salesforce

2. Peer-to-Peer (P2P) Systems #

Architecture #

┌─────────┐     ┌─────────┐     ┌─────────┐
│         │◄───►│         │◄───►│         │
│ PEER A  │     │ PEER B  │     │ PEER C  │
│         │◄─┐  │         │  ┌─►│         │
└─────────┘  │  └─────────┘  │  └─────────┘
             │               │
             │  ┌─────────┐  │
             │  │         │  │
             └─►│ PEER D  │◄─┘
                │         │
                └─────────┘

Key Characteristics #

  • Equality: All nodes can function as both clients and servers
  • Decentralization: No central coordination point
  • Resilience: System continues functioning when nodes join or leave
  • Resource Sharing: Computing power, storage, and bandwidth are collectively shared

Technical Implementation #

  • Discovery Mechanisms: DHT (Distributed Hash Tables), gossip protocols
  • Routing Algorithms: Chord, Kademlia, Pastry
  • Data Replication: Content is often replicated across multiple peers
  • Security Challenges: Trust establishment without central authority

Real-World Examples #

  • File Sharing: BitTorrent, IPFS (InterPlanetary File System)
  • Cryptocurrency Networks: Bitcoin, Ethereum blockchain
  • Communication Tools: Early versions of Skype
  • Distributed Computing: BOINC platform projects

3. Clustered Systems #

Architecture #

┌───────────────────────────────────────┐
│                                       │
│            CLUSTER MANAGER            │
│                                       │
└───────┬───────────┬───────────┬───────┘
        │           │           │
        ▼           ▼           ▼
┌───────────┐ ┌───────────┐ ┌───────────┐
│           │ │           │ │           │
│  NODE 1   │ │  NODE 2   │ │  NODE 3   │
│           │ │           │ │           │
└───────────┘ └───────────┘ └───────────┘

Key Characteristics #

  • Physical Proximity: Nodes typically located in the same data center
  • Homogeneous Hardware: Often uses similar or identical machines
  • Shared Resources: Common storage, memory, or processing capabilities
  • High Availability: Designed for fault tolerance and continuous operation

Technical Implementation #

  • Resource Management: Uses cluster managers like Kubernetes, Mesos
  • Job Scheduling: Distributes workloads across available nodes
  • Shared Storage: Often uses distributed file systems or SANs
  • Heartbeat Protocols: Monitors node health and manages failover

Real-World Examples #

  • High-Performance Computing: Scientific simulation clusters
  • Container Orchestration: Kubernetes clusters running microservices
  • Big Data Processing: Hadoop/Spark clusters
  • Database Clusters: MySQL Cluster, PostgreSQL with replication

4. Grid Computing Systems #

Architecture #

┌───────────────┐     ┌───────────────┐
│  ORGANIZATION │     │  ORGANIZATION │
│       A       │     │       B       │
│ ┌─────┐ ┌─────┐     │ ┌─────┐ ┌─────┐
│ │NODE │ │NODE │     │ │NODE │ │NODE │
│ │  1  │ │  2  │     │ │  1  │ │  2  │
│ └─────┘ └─────┘     │ └─────┘ └─────┘
└───────┬───────┘     └───────┬───────┘
        │                     │
        ▼                     ▼
┌───────────────────────────────────────┐
│                                       │
│          GRID MIDDLEWARE              │
│                                       │
└───────────────────┬───────────────────┘
                    │
                    ▼
┌───────────────────────────────────────┐
│                                       │
│         RESEARCH PROBLEM              │
│                                       │
└───────────────────────────────────────┘

Key Characteristics #

  • Geographic Distribution: Resources spread across multiple locations
  • Heterogeneous Resources: Different types of computers and networks
  • Virtual Organizations: Collaboration across institutional boundaries
  • Resource Sharing: Focuses on sharing computing power for large problems

Technical Implementation #

  • Grid Middleware: Software like Globus Toolkit that manages resources
  • Job Submission: Uses specialized protocols for submitting computing tasks
  • Security Infrastructure: Certificate-based authentication across domains
  • Data Management: Tools for moving large datasets between grid sites

Real-World Examples #

  • Scientific Computing: SETI@home (search for extraterrestrial intelligence)
  • Medical Research: Folding@home (protein folding simulations)
  • Particle Physics: LHC Computing Grid (analyzing CERN data)
  • Climate Modeling: Earth System Grid (climate simulation data)

5. Distributed Databases #

Architecture #

┌─────────────┐      ┌─────────────┐
│             │      │             │
│  DATABASE   │◄────►│  DATABASE   │
│   NODE 1    │      │   NODE 2    │
│  (Shard A)  │      │  (Shard B)  │
└──────┬──────┘      └──────┬──────┘
       │                    │
       │     ┌─────────┐    │
       └────►│         │◄───┘
             │ QUERY   │
             │ ROUTER  │
             │         │
             └────┬────┘
                  │
                  ▼
             ┌─────────┐
             │         │
             │ CLIENT  │
             │         │
             └─────────┘

Key Characteristics #

  • Data Partitioning: Information divided across multiple nodes (sharding)
  • Replication: Data copied to multiple locations for redundancy
  • Consistency Models: Various approaches to maintaining data consistency
  • Distributed Transactions: Mechanisms for maintaining ACID properties across nodes

Technical Implementation #

  • Consensus Algorithms: Paxos, Raft for maintaining consistency
  • Partitioning Strategies: Range-based, hash-based, or directory-based sharding
  • Query Processing: Distributed query execution and optimization
  • CAP Theorem Tradeoffs: Balancing Consistency, Availability, and Partition tolerance

Real-World Examples #

  • NoSQL Databases: Cassandra (AP system), MongoDB (CP system)
  • NewSQL Databases: Google Spanner, CockroachDB
  • Time-Series Databases: InfluxDB, TimescaleDB
  • Graph Databases: Neo4j (clustered), Amazon Neptune

6. Distributed File Systems #

Architecture #

┌─────────────┐      ┌─────────────┐
│             │      │             │
│   STORAGE   │      │   STORAGE   │
│   NODE 1    │      │   NODE 2    │
│             │      │             │
└──────┬──────┘      └──────┬──────┘
       │                    │
       │    ┌──────────┐    │
       └───►│          │◄───┘
            │ METADATA │
            │  SERVER  │
            │          │
            └─────┬────┘
                  │
                  ▼
             ┌─────────┐
             │         │
             │ CLIENT  │
             │         │
             └─────────┘

Key Characteristics #

  • Transparent Access: Files appear as if they’re on a local system
  • Location Independence: Users don’t need to know physical file locations
  • Fault Tolerance: System continues operating despite node failures
  • Scalability: Can add storage nodes to increase capacity

Technical Implementation #

  • Chunking: Files split into blocks distributed across nodes
  • Metadata Management: Separate servers track file locations and attributes
  • Caching: Local caching improves performance for frequently accessed files
  • Consistency Protocols: Mechanisms to handle concurrent file access

Real-World Examples #

  • Cloud Storage: Amazon S3, Google Cloud Storage
  • Big Data Storage: Hadoop Distributed File System (HDFS)
  • Enterprise Storage: GlusterFS, Ceph
  • Research Systems: Google File System (GFS), Andrew File System (AFS)

7. Cloud-Based Distributed Systems #

Architecture #

┌───────────────────────────────────────────────────────┐
│                                                       │
│                    CLOUD PROVIDER                     │
│                                                       │
│  ┌─────────────┐   ┌─────────────┐   ┌─────────────┐  │
│  │             │   │             │   │             │  │
│  │    COMPUTE  │   │   STORAGE   │   │  DATABASE   │  │
│  │   SERVICES  │   │  SERVICES   │   │  SERVICES   │  │
│  │             │   │             │   │             │  │
│  └─────────────┘   └─────────────┘   └─────────────┘  │
│                                                       │
└───────────────────────────┬───────────────────────────┘
                            │
                            ▼
┌───────────────┐    ┌─────────────┐    ┌───────────────┐
│               │    │             │    │               │
│    MOBILE     │    │    WEB      │    │     IOT       │
│    CLIENTS    │    │   CLIENTS   │    │    DEVICES    │
│               │    │             │    │               │
└───────────────┘    └─────────────┘    └───────────────┘

Key Characteristics #

  • Elasticity: Resources can scale up or down based on demand
  • Service-Based: Composed of multiple specialized services
  • Multi-Tenancy: Infrastructure shared among multiple customers
  • Pay-Per-Use: Resources billed based on actual consumption

Technical Implementation #

  • Virtualization: Uses VMs, containers, or serverless functions
  • Service Orchestration: Automated provisioning and management
  • API Gateways: Manages access to backend services
  • Monitoring & Telemetry: Distributed tracing and logging

Real-World Examples #

  • IaaS: Amazon EC2, Microsoft Azure VMs
  • PaaS: Heroku, Google App Engine
  • SaaS: Salesforce, Microsoft 365
  • Serverless: AWS Lambda, Azure Functions

8. Microservices Architecture #

Architecture #

┌────────────┐  ┌────────────┐  ┌────────────┐
│            │  │            │  │            │
│   USER     │  │  PRODUCT   │  │   ORDER    │
│  SERVICE   │  │  SERVICE   │  │  SERVICE   │
│            │  │            │  │            │
└─────┬──────┘  └─────┬──────┘  └─────┬──────┘
      │               │               │
      │               │               │
      ▼               ▼               ▼
┌────────────────────────────────────────────┐
│                                            │
│              API GATEWAY                   │
│                                            │
└────────────────────┬───────────────────────┘
                     │
                     ▼
              ┌─────────────┐
              │             │
              │   CLIENT    │
              │             │
              └─────────────┘

Key Characteristics #

  • Service Independence: Each service can be developed and deployed separately
  • Domain-Focused: Services organized around business capabilities
  • Decentralized Data: Each service typically manages its own data
  • Smart Endpoints, Dumb Pipes: Logic in services, simple communication channels

Technical Implementation #

  • Service Discovery: Mechanisms for services to find each other
  • API Gateways: Single entry point for clients
  • Circuit Breakers: Prevent cascading failures
  • Event-Driven Communication: Often uses message queues for asynchronous communication

Real-World Examples #

  • E-commerce Platforms: Amazon’s service-oriented architecture
  • Streaming Services: Netflix microservices (700+ services)
  • Financial Systems: PayPal’s payment processing platform
  • Transportation: Uber’s ride-sharing platform